3.3.98 \(\int \frac {1}{x^5 (1-2 x^4+x^8)} \, dx\) [298]

Optimal. Leaf size=37 \[ -\frac {1}{4 x^4}+\frac {1}{4 \left (1-x^4\right )}+2 \log (x)-\frac {1}{2} \log \left (1-x^4\right ) \]

[Out]

-1/4/x^4+1/4/(-x^4+1)+2*ln(x)-1/2*ln(-x^4+1)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 37, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {28, 272, 46} \begin {gather*} \frac {1}{4 \left (1-x^4\right )}-\frac {1}{4 x^4}-\frac {1}{2} \log \left (1-x^4\right )+2 \log (x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^5*(1 - 2*x^4 + x^8)),x]

[Out]

-1/4*1/x^4 + 1/(4*(1 - x^4)) + 2*Log[x] - Log[1 - x^4]/2

Rule 28

Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/c^p, Int[u*(b/2 + c*x^n)^(2*
p), x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 46

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x
)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && Lt
Q[m + n + 2, 0])

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x^5 \left (1-2 x^4+x^8\right )} \, dx &=\int \frac {1}{x^5 \left (-1+x^4\right )^2} \, dx\\ &=\frac {1}{4} \text {Subst}\left (\int \frac {1}{(-1+x)^2 x^2} \, dx,x,x^4\right )\\ &=\frac {1}{4} \text {Subst}\left (\int \left (\frac {1}{(-1+x)^2}-\frac {2}{-1+x}+\frac {1}{x^2}+\frac {2}{x}\right ) \, dx,x,x^4\right )\\ &=-\frac {1}{4 x^4}+\frac {1}{4 \left (1-x^4\right )}+2 \log (x)-\frac {1}{2} \log \left (1-x^4\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 35, normalized size = 0.95 \begin {gather*} -\frac {1}{4 x^4}-\frac {1}{4 \left (-1+x^4\right )}+2 \log (x)-\frac {1}{2} \log \left (1-x^4\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^5*(1 - 2*x^4 + x^8)),x]

[Out]

-1/4*1/x^4 - 1/(4*(-1 + x^4)) + 2*Log[x] - Log[1 - x^4]/2

________________________________________________________________________________________

Maple [A]
time = 0.03, size = 54, normalized size = 1.46

method result size
risch \(\frac {\frac {1}{4}-\frac {x^{4}}{2}}{x^{4} \left (x^{4}-1\right )}+2 \ln \left (x \right )-\frac {\ln \left (x^{4}-1\right )}{2}\) \(32\)
norman \(\frac {\frac {1}{4}-\frac {x^{4}}{2}}{x^{4} \left (x^{4}-1\right )}+2 \ln \left (x \right )-\frac {\ln \left (-1+x \right )}{2}-\frac {\ln \left (1+x \right )}{2}-\frac {\ln \left (x^{2}+1\right )}{2}\) \(44\)
default \(-\frac {1}{16 \left (-1+x \right )}-\frac {\ln \left (-1+x \right )}{2}+\frac {1}{8 x^{2}+8}-\frac {\ln \left (x^{2}+1\right )}{2}-\frac {1}{4 x^{4}}+2 \ln \left (x \right )+\frac {1}{16+16 x}-\frac {\ln \left (1+x \right )}{2}\) \(54\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^5/(x^8-2*x^4+1),x,method=_RETURNVERBOSE)

[Out]

-1/16/(-1+x)-1/2*ln(-1+x)+1/8/(x^2+1)-1/2*ln(x^2+1)-1/4/x^4+2*ln(x)+1/16/(1+x)-1/2*ln(1+x)

________________________________________________________________________________________

Maxima [A]
time = 0.30, size = 35, normalized size = 0.95 \begin {gather*} -\frac {2 \, x^{4} - 1}{4 \, {\left (x^{8} - x^{4}\right )}} - \frac {1}{2} \, \log \left (x^{4} - 1\right ) + \frac {1}{2} \, \log \left (x^{4}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(x^8-2*x^4+1),x, algorithm="maxima")

[Out]

-1/4*(2*x^4 - 1)/(x^8 - x^4) - 1/2*log(x^4 - 1) + 1/2*log(x^4)

________________________________________________________________________________________

Fricas [A]
time = 0.36, size = 50, normalized size = 1.35 \begin {gather*} -\frac {2 \, x^{4} + 2 \, {\left (x^{8} - x^{4}\right )} \log \left (x^{4} - 1\right ) - 8 \, {\left (x^{8} - x^{4}\right )} \log \left (x\right ) - 1}{4 \, {\left (x^{8} - x^{4}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(x^8-2*x^4+1),x, algorithm="fricas")

[Out]

-1/4*(2*x^4 + 2*(x^8 - x^4)*log(x^4 - 1) - 8*(x^8 - x^4)*log(x) - 1)/(x^8 - x^4)

________________________________________________________________________________________

Sympy [A]
time = 0.06, size = 29, normalized size = 0.78 \begin {gather*} \frac {1 - 2 x^{4}}{4 x^{8} - 4 x^{4}} + 2 \log {\left (x \right )} - \frac {\log {\left (x^{4} - 1 \right )}}{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**5/(x**8-2*x**4+1),x)

[Out]

(1 - 2*x**4)/(4*x**8 - 4*x**4) + 2*log(x) - log(x**4 - 1)/2

________________________________________________________________________________________

Giac [A]
time = 5.20, size = 36, normalized size = 0.97 \begin {gather*} -\frac {2 \, x^{4} - 1}{4 \, {\left (x^{8} - x^{4}\right )}} + \frac {1}{2} \, \log \left (x^{4}\right ) - \frac {1}{2} \, \log \left ({\left | x^{4} - 1 \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(x^8-2*x^4+1),x, algorithm="giac")

[Out]

-1/4*(2*x^4 - 1)/(x^8 - x^4) + 1/2*log(x^4) - 1/2*log(abs(x^4 - 1))

________________________________________________________________________________________

Mupad [B]
time = 0.05, size = 32, normalized size = 0.86 \begin {gather*} 2\,\ln \left (x\right )-\frac {\ln \left (x^4-1\right )}{2}+\frac {\frac {x^4}{2}-\frac {1}{4}}{x^4-x^8} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^5*(x^8 - 2*x^4 + 1)),x)

[Out]

2*log(x) - log(x^4 - 1)/2 + (x^4/2 - 1/4)/(x^4 - x^8)

________________________________________________________________________________________